Serveur d'exploration sur le patient édenté

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Fatigue testing of electron beam‐melted Ti‐6Al‐4V ELI alloy for dental implants

Identifieur interne : 002C06 ( Main/Exploration ); précédent : 002C05; suivant : 002C07

Fatigue testing of electron beam‐melted Ti‐6Al‐4V ELI alloy for dental implants

Auteurs : Gaurav V. Joshi [États-Unis] ; Yuanyuan Duan [États-Unis] ; John Neidigh [États-Unis] ; Mari Koike [États-Unis] ; Gilbert Chahine [États-Unis] ; Radovan Kovacevic [États-Unis] ; Toru Okabe [États-Unis] ; Jason A. Griggs [États-Unis]

Source :

RBID : ISTEX:68223FB7F3A64430B53A1064EE328526843D39CE

Descripteurs français

English descriptors

Abstract

Customized one‐component dental implants have been fabricated using Electron Beam Melting® (EBM®), which is a rapid prototyping and manufacturing technique. The goal of our study was to determine the effect of electron beam orientation on the fatigue resistance of EBM Ti‐6Al‐4V ELI alloy. EBM technique was used to fabricate Ti‐6Al‐4V ELI alloy blocks, which were cut into rectangular beam specimens with dimensions of 25 × 4 × 3 mm, such that electron beam orientation was either parallel (group A) or perpendicular (group B) to the long axis of the specimens. The specimens were subjected to cyclic fatigue (R = 0.1) in four‐point flexure under ambient conditions using various stress amplitudes below the yield stress. The fatigue lifetime data were fit to an inverse power law–Weibull model to predict the peak stress corresponding to failure probabilities of 5 and 63% at 2M cycles (σmax, 5% and σmax, 63%). Groups A and B did not have significantly different Weibull modulus, m (p > 0.05). The specimens with parallel orientation showed significantly higher σmax, 63% (p ≤ 0.05), but there was no significant difference in the σmax, 5% (p > 0.05). Thus, it can be concluded that the fatigue resistance of the material was greatest when the electron beam orientation was perpendicular to the direction of crack propagation. © 2012 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater 101B: 124–130, 2013.

Url:
DOI: 10.1002/jbm.b.32825


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Fatigue testing of electron beam‐melted Ti‐6Al‐4V ELI alloy for dental implants</title>
<author>
<name sortKey="Joshi, Gaurav V" sort="Joshi, Gaurav V" uniqKey="Joshi G" first="Gaurav V." last="Joshi">Gaurav V. Joshi</name>
</author>
<author>
<name sortKey="Duan, Yuanyuan" sort="Duan, Yuanyuan" uniqKey="Duan Y" first="Yuanyuan" last="Duan">Yuanyuan Duan</name>
</author>
<author>
<name sortKey="Neidigh, John" sort="Neidigh, John" uniqKey="Neidigh J" first="John" last="Neidigh">John Neidigh</name>
</author>
<author>
<name sortKey="Koike, Mari" sort="Koike, Mari" uniqKey="Koike M" first="Mari" last="Koike">Mari Koike</name>
</author>
<author>
<name sortKey="Chahine, Gilbert" sort="Chahine, Gilbert" uniqKey="Chahine G" first="Gilbert" last="Chahine">Gilbert Chahine</name>
</author>
<author>
<name sortKey="Kovacevic, Radovan" sort="Kovacevic, Radovan" uniqKey="Kovacevic R" first="Radovan" last="Kovacevic">Radovan Kovacevic</name>
</author>
<author>
<name sortKey="Okabe, Toru" sort="Okabe, Toru" uniqKey="Okabe T" first="Toru" last="Okabe">Toru Okabe</name>
</author>
<author>
<name sortKey="Griggs, Jason A" sort="Griggs, Jason A" uniqKey="Griggs J" first="Jason A." last="Griggs">Jason A. Griggs</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:68223FB7F3A64430B53A1064EE328526843D39CE</idno>
<date when="2013" year="2013">2013</date>
<idno type="doi">10.1002/jbm.b.32825</idno>
<idno type="url">https://api.istex.fr/document/68223FB7F3A64430B53A1064EE328526843D39CE/fulltext/pdf</idno>
<idno type="wicri:Area/Istex/Corpus">003349</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Corpus" wicri:corpus="ISTEX">003349</idno>
<idno type="wicri:Area/Istex/Curation">003349</idno>
<idno type="wicri:Area/Istex/Checkpoint">000759</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Checkpoint">000759</idno>
<idno type="wicri:doubleKey">1552-4973:2013:Joshi G:fatigue:testing:of</idno>
<idno type="wicri:Area/Main/Merge">002C18</idno>
<idno type="wicri:Area/Main/Curation">002C06</idno>
<idno type="wicri:Area/Main/Exploration">002C06</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a" type="main" xml:lang="en">Fatigue testing of electron beam‐melted Ti‐6Al‐4V ELI alloy for dental implants
<ref type="note" target="#fn2"></ref>
</title>
<author>
<name sortKey="Joshi, Gaurav V" sort="Joshi, Gaurav V" uniqKey="Joshi G" first="Gaurav V." last="Joshi">Gaurav V. Joshi</name>
<affiliation wicri:level="2">
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">État du Mississippi</region>
</placeName>
<wicri:cityArea>Department of Biomedical Materials Science, School of Dentistry, University of Mississippi Medical Center, Jackson</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Duan, Yuanyuan" sort="Duan, Yuanyuan" uniqKey="Duan Y" first="Yuanyuan" last="Duan">Yuanyuan Duan</name>
<affiliation wicri:level="2">
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">État du Mississippi</region>
</placeName>
<wicri:cityArea>Department of Biomedical Materials Science, School of Dentistry, University of Mississippi Medical Center, Jackson</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Neidigh, John" sort="Neidigh, John" uniqKey="Neidigh J" first="John" last="Neidigh">John Neidigh</name>
<affiliation wicri:level="2">
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">État du Mississippi</region>
</placeName>
<wicri:cityArea>Department of Biomedical Materials Science, School of Dentistry, University of Mississippi Medical Center, Jackson</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Koike, Mari" sort="Koike, Mari" uniqKey="Koike M" first="Mari" last="Koike">Mari Koike</name>
<affiliation wicri:level="2">
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Texas</region>
</placeName>
<wicri:cityArea>Department of Biomaterials Science, Baylor College of Dentistry, Texas A&M Health Science Center, Dallas</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Chahine, Gilbert" sort="Chahine, Gilbert" uniqKey="Chahine G" first="Gilbert" last="Chahine">Gilbert Chahine</name>
<affiliation wicri:level="2">
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Texas</region>
</placeName>
<wicri:cityArea>Department of Mechanical Engineering, School of Engineering, Southern Methodist University, Dallas</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Kovacevic, Radovan" sort="Kovacevic, Radovan" uniqKey="Kovacevic R" first="Radovan" last="Kovacevic">Radovan Kovacevic</name>
<affiliation wicri:level="2">
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Texas</region>
</placeName>
<wicri:cityArea>Department of Mechanical Engineering, School of Engineering, Southern Methodist University, Dallas</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Okabe, Toru" sort="Okabe, Toru" uniqKey="Okabe T" first="Toru" last="Okabe">Toru Okabe</name>
<affiliation wicri:level="2">
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Texas</region>
</placeName>
<wicri:cityArea>Department of Biomaterials Science, Baylor College of Dentistry, Texas A&M Health Science Center, Dallas</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Griggs, Jason A" sort="Griggs, Jason A" uniqKey="Griggs J" first="Jason A." last="Griggs">Jason A. Griggs</name>
<affiliation wicri:level="2">
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">État du Mississippi</region>
</placeName>
<wicri:cityArea>Department of Biomedical Materials Science, School of Dentistry, University of Mississippi Medical Center, Jackson</wicri:cityArea>
</affiliation>
<affiliation wicri:level="1">
<country wicri:rule="url">États-Unis</country>
</affiliation>
<affiliation wicri:level="2">
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">État du Mississippi</region>
</placeName>
<wicri:cityArea>Correspondence address: Department of Biomedical Materials Science, School of Dentistry, University of Mississippi Medical Center, Jackson</wicri:cityArea>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j" type="main">Journal of Biomedical Materials Research Part B: Applied Biomaterials</title>
<title level="j" type="alt">JOURNAL OF BIOMEDICAL MATERIALS RESEARCH PART B: APPLIED BIOMATERIALS</title>
<idno type="ISSN">1552-4973</idno>
<idno type="eISSN">1552-4981</idno>
<imprint>
<biblScope unit="vol">101B</biblScope>
<biblScope unit="issue">1</biblScope>
<biblScope unit="page" from="124">124</biblScope>
<biblScope unit="page" to="130">130</biblScope>
<biblScope unit="page-count">7</biblScope>
<publisher>Wiley Subscription Services, Inc., A Wiley Company</publisher>
<pubPlace>Hoboken</pubPlace>
<date type="published" when="2013-01">2013-01</date>
</imprint>
<idno type="ISSN">1552-4973</idno>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">1552-4973</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Abrupt change</term>
<term>Alloy</term>
<term>Alloy blocks</term>
<term>Ambient conditions</term>
<term>Biomed mater</term>
<term>Biomedical materials research</term>
<term>Cellular titanium</term>
<term>Characteristic lifetime</term>
<term>Clinical situation</term>
<term>Coronoradicular direction</term>
<term>Crack growth</term>
<term>Crack growth exponent</term>
<term>Crack path</term>
<term>Crack propagation</term>
<term>Cumulative damage model</term>
<term>Current study</term>
<term>Cyclic</term>
<term>Cyclic fatigue</term>
<term>Cyclic loading</term>
<term>Data analyses</term>
<term>Dental implants</term>
<term>Elastic modulus</term>
<term>Electron beam</term>
<term>Electron beam orientation</term>
<term>Entire fracture surface</term>
<term>Failure origin</term>
<term>Failure probabilities</term>
<term>Failure probability</term>
<term>Fatigue</term>
<term>Fatigue properties</term>
<term>Fatigue resistance</term>
<term>Fatigue striations</term>
<term>Fatigue testing</term>
<term>Fractographic analysis</term>
<term>Fracture</term>
<term>Fracture origin</term>
<term>Fracture surface</term>
<term>Growth rate</term>
<term>Implant</term>
<term>Inner span</term>
<term>Inverse power model</term>
<term>Likelihood values</term>
<term>Long axis</term>
<term>Mater</term>
<term>Mechanical properties</term>
<term>Microvoid dimples</term>
<term>Model parameters</term>
<term>Online</term>
<term>Online issue</term>
<term>Oral maxillofac impl</term>
<term>Orthopaedic implant applications</term>
<term>Outer span</term>
<term>Parallel orientation</term>
<term>Peak stress plots</term>
<term>Peak stresses</term>
<term>Present study</term>
<term>Previous studies</term>
<term>Processing parameters</term>
<term>Prototyping</term>
<term>Rapid prototyping</term>
<term>Rectangular beam specimens</term>
<term>Rmax</term>
<term>Selective electron beam</term>
<term>Selective laser</term>
<term>Selective laser sintering</term>
<term>Statistical models</term>
<term>Statistical power</term>
<term>Stress graph</term>
<term>Target peak stress</term>
<term>Tensile surface</term>
<term>Titanium</term>
<term>Titanium alloy</term>
<term>Torsional fatigue resistance</term>
<term>Various stress amplitudes</term>
<term>Weibull</term>
<term>Weibull distribution</term>
<term>Wiley periodicals</term>
</keywords>
<keywords scheme="Teeft" xml:lang="en">
<term>Abrupt change</term>
<term>Alloy</term>
<term>Alloy blocks</term>
<term>Ambient conditions</term>
<term>Biomed mater</term>
<term>Biomedical materials research</term>
<term>Cellular titanium</term>
<term>Characteristic lifetime</term>
<term>Clinical situation</term>
<term>Coronoradicular direction</term>
<term>Crack growth</term>
<term>Crack growth exponent</term>
<term>Crack path</term>
<term>Crack propagation</term>
<term>Cumulative damage model</term>
<term>Current study</term>
<term>Cyclic</term>
<term>Cyclic fatigue</term>
<term>Cyclic loading</term>
<term>Data analyses</term>
<term>Dental implants</term>
<term>Elastic modulus</term>
<term>Electron beam</term>
<term>Electron beam orientation</term>
<term>Entire fracture surface</term>
<term>Failure origin</term>
<term>Failure probabilities</term>
<term>Failure probability</term>
<term>Fatigue</term>
<term>Fatigue properties</term>
<term>Fatigue resistance</term>
<term>Fatigue striations</term>
<term>Fatigue testing</term>
<term>Fractographic analysis</term>
<term>Fracture</term>
<term>Fracture origin</term>
<term>Fracture surface</term>
<term>Growth rate</term>
<term>Implant</term>
<term>Inner span</term>
<term>Inverse power model</term>
<term>Likelihood values</term>
<term>Long axis</term>
<term>Mater</term>
<term>Mechanical properties</term>
<term>Microvoid dimples</term>
<term>Model parameters</term>
<term>Online</term>
<term>Online issue</term>
<term>Oral maxillofac impl</term>
<term>Orthopaedic implant applications</term>
<term>Outer span</term>
<term>Parallel orientation</term>
<term>Peak stress plots</term>
<term>Peak stresses</term>
<term>Present study</term>
<term>Previous studies</term>
<term>Processing parameters</term>
<term>Prototyping</term>
<term>Rapid prototyping</term>
<term>Rectangular beam specimens</term>
<term>Rmax</term>
<term>Selective electron beam</term>
<term>Selective laser</term>
<term>Selective laser sintering</term>
<term>Statistical models</term>
<term>Statistical power</term>
<term>Stress graph</term>
<term>Target peak stress</term>
<term>Tensile surface</term>
<term>Titanium</term>
<term>Titanium alloy</term>
<term>Torsional fatigue resistance</term>
<term>Various stress amplitudes</term>
<term>Weibull</term>
<term>Weibull distribution</term>
<term>Wiley periodicals</term>
</keywords>
<keywords scheme="Wicri" type="topic" xml:lang="fr">
<term>Alliage</term>
<term>Titane</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Customized one‐component dental implants have been fabricated using Electron Beam Melting® (EBM®), which is a rapid prototyping and manufacturing technique. The goal of our study was to determine the effect of electron beam orientation on the fatigue resistance of EBM Ti‐6Al‐4V ELI alloy. EBM technique was used to fabricate Ti‐6Al‐4V ELI alloy blocks, which were cut into rectangular beam specimens with dimensions of 25 × 4 × 3 mm, such that electron beam orientation was either parallel (group A) or perpendicular (group B) to the long axis of the specimens. The specimens were subjected to cyclic fatigue (R = 0.1) in four‐point flexure under ambient conditions using various stress amplitudes below the yield stress. The fatigue lifetime data were fit to an inverse power law–Weibull model to predict the peak stress corresponding to failure probabilities of 5 and 63% at 2M cycles (σmax, 5% and σmax, 63%). Groups A and B did not have significantly different Weibull modulus, m (p > 0.05). The specimens with parallel orientation showed significantly higher σmax, 63% (p ≤ 0.05), but there was no significant difference in the σmax, 5% (p > 0.05). Thus, it can be concluded that the fatigue resistance of the material was greatest when the electron beam orientation was perpendicular to the direction of crack propagation. © 2012 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater 101B: 124–130, 2013.</div>
</front>
</TEI>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Texas</li>
<li>État du Mississippi</li>
</region>
</list>
<tree>
<country name="États-Unis">
<region name="État du Mississippi">
<name sortKey="Joshi, Gaurav V" sort="Joshi, Gaurav V" uniqKey="Joshi G" first="Gaurav V." last="Joshi">Gaurav V. Joshi</name>
</region>
<name sortKey="Chahine, Gilbert" sort="Chahine, Gilbert" uniqKey="Chahine G" first="Gilbert" last="Chahine">Gilbert Chahine</name>
<name sortKey="Duan, Yuanyuan" sort="Duan, Yuanyuan" uniqKey="Duan Y" first="Yuanyuan" last="Duan">Yuanyuan Duan</name>
<name sortKey="Griggs, Jason A" sort="Griggs, Jason A" uniqKey="Griggs J" first="Jason A." last="Griggs">Jason A. Griggs</name>
<name sortKey="Griggs, Jason A" sort="Griggs, Jason A" uniqKey="Griggs J" first="Jason A." last="Griggs">Jason A. Griggs</name>
<name sortKey="Griggs, Jason A" sort="Griggs, Jason A" uniqKey="Griggs J" first="Jason A." last="Griggs">Jason A. Griggs</name>
<name sortKey="Koike, Mari" sort="Koike, Mari" uniqKey="Koike M" first="Mari" last="Koike">Mari Koike</name>
<name sortKey="Kovacevic, Radovan" sort="Kovacevic, Radovan" uniqKey="Kovacevic R" first="Radovan" last="Kovacevic">Radovan Kovacevic</name>
<name sortKey="Neidigh, John" sort="Neidigh, John" uniqKey="Neidigh J" first="John" last="Neidigh">John Neidigh</name>
<name sortKey="Okabe, Toru" sort="Okabe, Toru" uniqKey="Okabe T" first="Toru" last="Okabe">Toru Okabe</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Santé/explor/EdenteV2/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002C06 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 002C06 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Santé
   |area=    EdenteV2
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     ISTEX:68223FB7F3A64430B53A1064EE328526843D39CE
   |texte=   Fatigue testing of electron beam‐melted Ti‐6Al‐4V ELI alloy for dental implants
}}

Wicri

This area was generated with Dilib version V0.6.32.
Data generation: Thu Nov 30 15:26:48 2017. Site generation: Tue Mar 8 16:36:20 2022